Research of weak fault feature information extraction of planetary gear based on ensemble empirical mode decomposition and adaptive stochastic resonance

نویسندگان

  • Xi-hui Chen
  • Gang Cheng
  • Xian-lei Shan
  • Xiao Hu
  • Qiang Guo
  • Hou-guang Liu
چکیده

Characterized by small size, light weight and large transmission ratio, planetary gear transmission is widely used in large scale complex mechanical system with low speed and heavy duty. However, due to the influences of operating condition, manufacturing error, assembly error and multi-tooth meshing, the vibration signal of planetary gear exhibits the characteristics of nonlinear and non-stationary. Especially when early gear fault occurs, the weak fault feature information is submerged in interfering signal. A weak fault feature information extraction method of planetary gear based on Ensemble Empirical Mode Decomposition (EEMD) and Adaptive Stochastic Resonance (ASR) is proposed. The original signal is decomposed to the Intrinsic Mode Functions (IMFs) with small modal aliasing by EEMD. The Signal to Noise Ratio (SNR) of fault feature frequency information of each IMF is calculated, and the IMFs with first four higher SNR are reconstructed and selected as the effective IMFs containing main fault feature information. ASR system is built by combining Particle Swarm Optimization (PSO) and Stochastic Resonance (SR). PSO algorithm is used to optimize the critical parameters of SR, and SNR of ASR output signal is defined as an optimization objective. When the signal reconstructed by effective IMFs is inputted into ASR system, the weak fault feature information can be extracted from the output signal of ASR system. The experimental results show that the proposed method can extract the weak fault feature information of normal gear and fault gears successfully. The amplitudes of fault feature frequency and its sidebands generated by planetary gear fault have a significantly increase, and the effects on sideband amplitudes of faults become even greater than that on the amplitude of fault feature frequency. For different gear faults, the amplitude of fault feature frequency has different changes, meanwhile different sidebands are produced. Planetary gear fault diagnosis can be achieved accurately by comparing the extracted weak fault feature information, so it is an effective method of weak fault feature information extraction of planetary gear. 2015 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Fault Diagnosis Method for Automaton based on Morphological Component Analysis and Ensemble Empirical Mode Decomposition

In the fault diagnosis of automaton, the vibration signal presents non-stationary and non-periodic, which make it difficult to extract the fault features. To solve this problem, an automaton fault diagnosis method based on morphological component analysis (MCA) and ensemble empirical mode decomposition (EEMD) was proposed. Based on the advantages of the morphological component analysis method i...

متن کامل

A Fault Diagnosis Method for Automaton Based on Morphological Component Analysis and Ensemble Empirical Mode Decomposition

In the fault diagnosis of automaton, the vibration signal presents non-stationary and non-periodic, which make it difficult to extract the fault features. To solve this problem, an automaton fault diagnosis method based on morphological component analysis (MCA) and ensemble empirical mode decomposition (EEMD) was proposed. Based on the advantages of the morphological component analysis method i...

متن کامل

Research of Planetary Gear Fault Diagnosis Based on Permutation Entropy of CEEMDAN and ANFIS

For planetary gear has the characteristics of small volume, light weight and large transmission ratio, it is widely used in high speed and high power mechanical system. Poor working conditions result in frequent failures of planetary gear. A method is proposed for diagnosing faults in planetary gear based on permutation entropy of Complete Ensemble Empirical Mode Decomposition with Adaptive Noi...

متن کامل

Planetary gearbox fault diagnosis using an adaptive stochastic resonance method

Planetary gearboxes are widely used in aerospace, automotive and heavy industry applications due to their large transmission ratio, strong load-bearing capacity and high transmission efficiency. The tough operation conditions of heavy duty and intensive impact load may cause gear tooth damage such as fatigue crack and teeth missed etc. The challenging issues in fault diagnosis of planetary gear...

متن کامل

A review on EEG based brain computer interface systems feature extraction methods

The brain – computer interface (BCI) provides a communicational channel between human and machine. Most of these systems are based on brain activities. Brain Computer-Interfacing is a methodology that provides a way for communication with the outside environment using the brain thoughts. The success of this methodology depends on the selection of methods to process the brain signals in each pha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016